jueves, 3 de diciembre de 2009

Transposición genética


En 1950 Barbara McClintock realizó lo que se puede llamar un descubrimiento fundamental en el campo de la genética. Como suele suceder en estos casos, y a pesar de que sus experimentos y su lógica eran completamente inapelables, la mayoría de los científicos desestimaron las conclusiones por ser demasiado revolucionarias: “Esta mujer o está loca o un genio”, escribió el biólogo E. F. Keller. “Estaba tan sorprendida que pensé que me ridiculizarían, o me dirían que estaba realmente loca”, comentó la propia McClintock años más tarde. Solo 36 años más tarde la comunidad científica al completo celebró su descubrimiento cuando fue recompensada con el Nobel de Medicina, la única que no ha compartido el premio en esta categoría. Y todo porque sus teorías sobre ciertos elementos en los cromosomas del maíz han sido fundamentales para entender la genética, la evolución, la enfermedad y el cáncer.

¿Qué fue lo que descubrió? En la década de 1940 se dio cuenta de que había algo raro en la heredabilidad de ciertos elementos genéticos, pues no se ajustaban al patrón esperado. Después de años de experimentación McClintock descubrió el motivo: había segmentos de ADN en los cromosomas que se movían de un lugar a otro del genoma. Reciben el nombre de trasposones (antes “genes saltarines”) o elementos genéticos móviles. Así, si el elemento transponible está insertado en el interior de un gen, puede suceder que al moverse el gen recupere la función que tenía y estaba “cortocircuitada” por el trasposón. Del mismo modo, si al cambiar de posición se inserta dentro de un gen, se produce una adición de una gran cantidad de nucleótidos que provoca la pérdida de la función de dicho gen. En definitiva, los trasposones provocan un tipo peculiar de mutación, pues crean inestabilidad en el genoma al moverse libremente por él. Y el nuestro contiene alrededor de 3 millones de ellos, ¡casi la mitad de todo nuestro ADN! No es raro entonces que los científicos, cada vez que trabajan con genes, no dejen de encontrarse con todo tipo de transposones: das una patada a una piedra del genoma y salta un transposón.

En los años siguientes se descubrió que había dos tipos de estos elementos: los trasposones de McClintock (que componen el 2,8% del genoma humano) y los retrotrasposones (que se llevan el 42,8%). Estos elementos hacen una copia de ellos mismos en ARN que se “retrocopia” en ADN y se inserta en el genoma. Este comportamiento es muy parecido al de los retrovirus, como el del sida o el de la gripe.

Todos los retroelementos del ser humano parecidos a los virus se originaron hace decenas de millones de años, en la mayoría de los casos. No tenemos evidencias de retrovirus modernos instalándose comodamente en nuestro genoma y convirtiéndose en retrotransposones. Sin embargo, sí ha pasado en el resto de los mamíferos. Por ejemplo, chimpancés y gorilas poseen muchas copias de un retroelemento, descendientes de un retrovirus que infectó sus genomas de manera independiente pero no hizo lo propio con humanos y orangutanes. Otro tipo de retroelementos son trozos oportunistas de ADN que gracias a unas mutaciones han adquirido la habilidad de moverse libremente por el genoma.

El más común de todos es uno relativamente pequeño llamado Alu: cerca del 10% de genoma humano consiste en más de un millón de elementos Alu, uno de los pocos tipos de retrotransposones todavía activos en nuestro ADN. Su importancia a la hora de entender cómo ha funcionado la evolución es obvia: si dos individuos tienen insertado el mismo retroelemento en idéntica parte de su genoma, querrá decir que lo han debido heredar de un antepasado común. Esto es lo que se descubrió casi por accidente a mediados de 1980.

En 1985 científicos de la Universidad de California en Davis y Berkeley realizaron el primer estudio del ADN que rodea a los genes que codifican la hemoglobina, y lo compararon con el de los chimpancés. Como era de esperar encontraron muchos elementos Alu. Mas lo llamativo fue que todos ellos, sin excepción, se encontraron en los mismos lugares y con las mismas direcciones en ambas especies. Comparando las secuencias de ADN de 7 elementos Alu en chimpancés y humanos se vio que la similitud entre ambos iba del 94,7% al 98,9%. Solo 3 de 15 mutaciones daban cuenta de estas diferencias.

Otro ejemplo es HERV-K, un retrotransposón que se introdujo en el antepasado común de humanos, simios y monos hace decenas de millones de años, y al contrario que la mayoría de estos elementos parecidos a los virus, todavía está activo en nuestro genoma. Científicos del Instituto Shemyakin-Ovchinnikov de Química Bioorgánica de Rusia, descubrieron en 2000 que 11 de los 14 elementos presentes en los humanos se encuentran en la misma posición en chimpancés y gorilas, lo que nos dice que se trata de las especies más cercanas a la nuestra. La siguiente es el orangután, con el que compartimos 9 HERV-K, y el gibón, con 7. Con los monos del Viejo Mundo compartimos cuatro elementos y con los del Nuevo Mundo solo dos.


Vía| Masabadell

No hay comentarios: